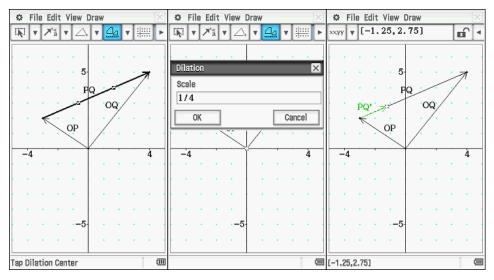

Activity 10 Position vectors and internal division

Aim: Develop the concept of position vectors and investigate their applications.

On the ClassPad Geometry application screen (right), position vectors $\overrightarrow{OP} = -3\mathbf{i} + 2\mathbf{j}$ and $\overrightarrow{OQ} = 4\mathbf{i} + 5\mathbf{j}$ are shown.

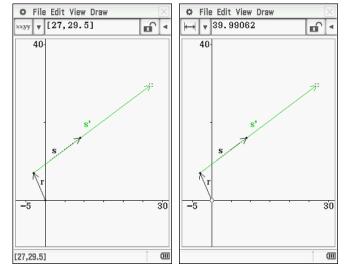
- 1. Replicate the diagram on your ClassPad.
- 2. Determine the vector given by $\overrightarrow{OQ} \overrightarrow{OP}$ (ie. $-\overrightarrow{OP} + \overrightarrow{OQ}$). This vector represents \overrightarrow{PQ} (or the position vector of Q relative to P). Construct this vector on your ClassPad.


- 3. Determine the position vector of the point T that divides PQ in the ratio 1:3 (i.e. $\frac{1}{4}$ of the way along \overline{PQ}).
- 4. At 2 pm container ship *Andromeda* is at a point with position vector [-3, 7] km relative to a port. It is travelling with constant velocity of [12, 9] km/h. Determine:
 - a) the position vector of the ship at 4:30 pm
 - b) the distance of the ship from port at 4:30 pm
 - c) the time, correct to the nearest 10 minutes, at which the ship is 75 km from the port. (CAS may be useful for this).

Learning notes

The location of a point in the plane can be described using co-ordinates, for example, point P(-3, 2), or as a position vector, for example, $\overrightarrow{OP} = -3\mathbf{i} + 2\mathbf{j}$ where O is the origin.

The labels on the vectors can be changed by selecting a vector then selecting label \mathbf{k} from the Measure pull down menu.


Points that divide vectors in a given ratio can be found using the dilation \square tool in the Construct pull down menu. Select the required vector, then the dilation tool, then tap the tail of the vector as the dilation centre. The ratio written as a fraction of the total length is the scale factor.

Extension: vectors can also be "divided" externally simply by entering a ratio greater than one as the dilation factor.

A similar idea can be used for Q4. The initial position vector **r** and the constant velocity vector **s** are constructed. A dilation of factor $2.5 (2\frac{1}{2}$ hours of travel) gives the position vector of the ship at 4:30 pm. The distance can be found by

selecting the tail of **r** and the

head of **s**.